Research

Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus

Gate-Tunable Giant Stark Effect in Few-Layer Black Phosphorus

Two-dimensional black phosphorus has sparked enormous research interest due to its high carrier mobility, layer-dependent direct bandgap and outstanding in-plane anisotropic property. It is one of the few 2D materials where it is possible to tune the bandgap over a wide energy range from the visible to the IR spectrum. A team led by Assistant professor Lu Jiong has demonstrated an electrical field-controlled giant Stark effect in black phosphorus for potential applications in advanced electro-optic devices. This work has recently been published in Nano Letters (DOI:10.1021/acs.nanolett.6b05381) and highlighted in Nature Photonics (doi:10.1038/nphoton.2017.102).

View Details

You May Also Like

Spotlight
Novel method to synthesise valuable fluorinated drug compounds

The research team led by Associate Professor KOH Ming Joo from the NUS Department of Chemistry, together with Professor Eric…

read more
Spotlight
Ultrabright molecular scintillators via near-unity triplet recycling

A research team led by Professor LIU Xiaogang from the Department of Chemistry at NUS, leveraged on rare-earth X–ray absorption and…

read more
Spotlight
Electro-valorization of carbon dioxide to value-added products

A research team led by Associate Professor YEO Boon Siang, Jason from the Department of Chemistry at NUS has unravelled…

read more
Spotlight
Breakthrough in drug-free pain relief: Solvent-mediated analgesia for safer, non-addictive pain management

The research team led by Professor LIU Xiaogang from the Department of Chemistry at NUS developed an upconversion nanoprobe capable…

read more