Research

Incorporating ferromagnetism and superconductivity together in a single layer of molecular superlattice

Incorporating ferromagnetism and superconductivity together in a single layer of molecular superlattice

A research team led by Assistant Professor Lu Jiong from the Department of Chemistry, NUS has demonstrated that the incorporation of isolated cobalt (Co) atoms into superconducting TaS2 layers can induce local magnetic moments and ferromagnetic coupling. This creates a material with ferromagnetic and superconducting domains within a single atomic layer. In comparison with conventional vertically stacked structures, integrating these two competing phases into a single layer not only offers improved flexibility in device design and fabrication, it also opens up new potential applications.

The interplay between superconductivity and ferromagnetism creates numerous exotic physical phenomena, which can be harnessed for next generation device applications. The integration of these two competing phases is usually achieved by vertically stacking superconductor and ferromagnetic layers one after another. Controllable synthesis of hybrid atomic layers which accommodate both superconductivity and ferromagnetism remain a considerable challenge.

Prof Lu said, “We envisage that our findings of the interlayer-space confined chemical design will provide a new chemical route to engineer artificial molecular superlattice of layered materials with exotic and antagonistic properties for desired functionalities.”
Read more about their new discovery here.

You May Also Like

Spotlight
Novel method to synthesise valuable fluorinated drug compounds

The research team led by Associate Professor KOH Ming Joo from the NUS Department of Chemistry, together with Professor Eric…

read more
Spotlight
Novel graphene ribbons poised to advance quantum technologies

An atomic model of the Janus graphene nanoribbons (left) and its atomic force microscopic image (right). The research team led…

read more
Spotlight
Ultrabright molecular scintillators via near-unity triplet recycling

A research team led by Professor LIU Xiaogang from the Department of Chemistry at NUS, leveraged on rare-earth X–ray absorption and…

read more
Spotlight
Electro-valorization of carbon dioxide to value-added products

A research team led by Associate Professor YEO Boon Siang, Jason from the Department of Chemistry at NUS has unravelled…

read more