Associate Professor CHEN Wei

(Dean's Chair Professor)


B.Sc., Nanjing Univ., 2001; Ph.D., National University of Singapore., 2004;Postdoc, National University of Singapore, 2004-2006; Lee Kuan Yew Research Fellow, National University of Singapore, 2006-2008

Contact Information

Department of Chemistry, NUS
3 Science Drive 3
Singapore 117543

Office: S5-05-07
Tel: (65) 6516 2921
Fax: (65) 6779 1691
E-mail: phycw@nus.edu.sg / chmcw@nus.edu.sg


Research Interests

Molecular-scale Interface Engineering for Organic and 2D Materials based Functional Devices, and Interface-Controlled Nanocatalysis for Energy and Environmental Research.


Many technologically important devices, such as transistors, memories, lasers, solar cells, light emitting diodes, sensors, electrochemical energy storage devices, all exploit interfacial phenomena. Without precise control of the interface properties, many devices will not function properly. The broad objective of Dr. Chen Wei’s research is to have molecular-scale understanding of these interface properties, and hence to provide design rules for effective interface engineering approaches to improve device performance and materials efficiency, with particular emphasis on the interface engineering for organic and 2D materials based functional devices, and interface-controlled nanocatalyst for energy and environmental research.

Current and future research interests

  • Molecular-level interface engineering for organic electronic devices, and 2D-materials; 
  • Interface-controlled nanocatalysis for energy and environmental research;
  • Rational design of self-assembled molecular nanostructure arrays over macroscopic area with superior multi-functionalities for molecular nano-devices;

 

1. Molecular-level interface engineering for graphene and 2D-materials

chenwei_pic1

(1) [Nature Communication 6, 6485 (2015); Angew. Chem. Int. Ed. 56, 9131 (2017); Nano Letter 17, 4122 (2017); Nano Research 10, 1281-1291 (2017); 2D Materials 4 021007 (2017); Small, 11, 4829-4836 (2015); ACS Nano 8, 5323-5329 (2014); Appl. Phys. Lett. 102, 203109 (2013); Appl. Phys. Lett. 103, 063109 (2013); Appl. Phys. Lett. 103, 263117 (2013); Appl. Phys. Lett. 99, 012112 (2011); Appl. Phys. Lett. 98, 193113 (2011); Appl. Phys. Lett. 96, 213104 (2010); J. Am. Chem. Soc. 129,10418 (2007). Granted Patents: Chinese Patent No. ZL 201180022146.0, granted on 22nd June 2016; US Patent No. 9,269,773, granted on 23rd Feb 2016; Russian Patent No. 2565336, granted on 20th Oct 2015; Japanese Patent 5814348, granted on 2nd Oct 2015]

 

(2) We have systematically investigated of epitaxial growth mechanism of single blue phosphorous and black phosphorous films, CVD graphene on metals, and the epitaxial graphene on SiC. [ACS Nano 11, 4943–4949 (2017); Nano Letter 16, 4903-4908 (2016); Nanoscale 7, 4522-4528 (2015); Scientific Reports 4, 4431 (2014); J. Am. Chem. Soc. 135, 9050-9054 (2013); J. Am. Chem. Soc. 135, 8409-8414 (2013); ACS Nano 3, 3431 (2009); ACS Nano. 2, 2513-2518 (2008).]

 

2. We developed various bottom-up self-assembly approaches for the rational design of molecular nanostructure arrays over macroscopic area with superior multi-functionalities for molecular nano-devices, as well as to systematically investigated the molecule-substrate interfacial properties, including ultrafast interfacial charge transfer, interfacial energy level alignment and molecular orientation.

chenwei_pic2

(1) We have developed various self-assembly strategies to successfully fabricate molecular nanostructure arrays over macroscopic area with desired functionalities, as revealed by low-temperature scanning tunneling microscopy (LT-STM) studies [Nanoscale 7, 4306 - 4324(2015); Phys. Chem. Chem. Phys., 15, 12414 – 12427(2013); J. Am. Chem. Soc. 133, 820–825 (2011); J. Am. Chem. Soc. 130, 2720 (2008); J. Am. Chem. Soc. 130, 12285-12289 (2008); Advanced Materials. 20, 484 (2008); Small 6, 70-75 (2010); Small 3, 2015 (2007); Chemical Communication 46,9040–9042 (2010); Appl. Phys. Lett. 99, 143114 (2011); Appl. Phys. Lett.92, 193301 (2008); Appl. Phys. Lett. 92, 023105 (2008); J. Appl. Phys. 111, 034304 (2012); J. Appl. Phys. 109, 084307 (2011); J. Chem. Phys. 142, 101902 (2015);  J. Chem. Phys. 134, 154706 (2011); J. Phys. Chem. C.118, 4151-4159 (2014); J. Phys. Chem. C.117, 1013-1019 (2013); J. Phys. Chem. C. 116, 11565-11569 (2012).].

(2) We have systematically investigated intermolecular interaction determined molecular orientation at organic donor-acceptor heterojunction interfaces, fabricated organic heterojunctions with well-defined molecular orientation, revealed the molecular orientation dependent energy level alignment mechanism at the organic donor-acceptor heterojunction interfaces, and the correlation with the organic electronic device performance. [ACS Nano 8, 1699-1707 (2014); ACS Nano 2, 693 (2008); Advanced Functional Materials 24, 6540-6547(2014); Advanced Functional Materials 21, 410-424 (2011); ACS Applied Materials & Interfaces 5, 4696-4701 (2013); ACS Applied Materials & Interfaces  4, 3134-3140 (2012); J. Mater. Chem. C., 1, 1491-1499 (2013); Organic Electronics 12, 2793-2800 (2012); Organic Electronics 12, 534-540 (2011); Appl. Phys. Lett. 103, 063303 (2013); Appl. Phys. Lett. 99, 093301 (2011); Appl. Phys. Lett. 92, 063308 (2008); Appl. Phys. Lett. 91, 114102 (2007); Chemical Communication 4276-4278 (2008); J. Phys. Chem. C. 115, 23922-23928 (2011); J. Appl. Phys. 108, 053706 (2010); J. Phys. Chem. C. 112, 5036 (2008); J. Phys. Chem. C. 113, 12832-12839 (2009); J. Appl. Phys. 114, 113709 (2013);  J. Appl. Phys. 106, 064910 (2009); Phys. Chem. Chem. Phys., 14, 14127-14141 (2012) Chem. Mater. 20, 7017-7021 (2008).]

 

3.We have started the research of interface-controlled nanocatalysis for energy and environmental research, with particular emphasis on the atomic scale investigation of surface reaction mechanism and single molecule manipulation. [Nano Energy. 36, 68-75 (2017); ACS Catalysis 6, 4430-4439 (2016); Nano Letter15,3181–3188 (2015); Nano Letter 15,8091-8098 (2015); Appl. Phys. Lett. 104, 113506 (2014); J. Phys. Chem. C.118, 1712-1718 (2014); Small 8, 1423-1428 (2012).]

 



Selected Invited reviews:

  1. Towards Single Molecule Switches” (invited review article)  Zhang JL, Zhong JQ, Lin JD, Hu WP, Wu K, Xu GQ, Wee ATS, Chen Wei*, Chemical Society Reviews 44, 2998-3022(2015).DOI: 10.1039/C4CS00377B

  2. Rational Design of Two-Dimensional Molecular Donor-Acceptor Nanostructure Arrays (invited review article)     Zhang JL, Zhong S, Zhong JQ, Niu TC, Hu WP, Wee ATS, Chen Wei*, Nanoscale 7, 4306 - 4324(2015).

  3.  “Self-Assembly of Binary Molecular Nanostructure Arrays on Graphite” (invited review article) Zhang JL, Niu TC, Wee ATS, Chen Wei*, Phys. Chem. Chem. Phys., 15, 12414 – 12427(2013).

  4. “Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine” (invited review article)     Mao HY, Laurent S, Chen Wei*, Akhavan O, Imani M, and Mahmoudi M*, Chem. Rev. 113, 3407-3424 (2013).

  5. Manipulating the Electronic Properties of Graphene via Molecular Functionalization” (invited review article)     Mao HY, Lu YH, Lin JD, Zhong S, Wee ATS, Chen Wei*, Prog. Surf. Sci. 88, 132-159 (2013).

  6. “Self-Assembly of Binary Molecular Nanostructure Arrays on Graphite” (invited review article)     Zhang JL, Niu TC, Wee ATS, Chen Wei*, Phys. Chem. Chem. Phys., 15, 12414 – 12427(2013).

  7.  “The Role of Gap States on the Energy Level Alignment at the Organic Heterojunction Interfaces(invited review article) Zhong S, Zhong JQ, Mao HY, Zhang JL, Lin JD, Chen Wei*, Phys. Chem. Chem. Phys., 14, 14127-14141 (2012).

  8.  “Organic-Organic Heterojunction Interfaces: Effect of Molecular Orientation” (invited review article) Chen Wei*, Qi DC, Huang H, Gao XY, and Wee ATS*, Advanced Functional Materials 21, 410-424 (2011).

  9. Surface Transfer Doping of Semiconductors(invited review article)           Chen Wei*, Qi DC, Gao XY, and Wee ATS*, Prog. Surf. Sci. 84, 279-321 (2009).


Book Chapters:

  1. "STM Studies of Molecule-Metal Interfaces" (invited book chapter) Wong SL, Huang H, Wee ATS and Chen Wei*,, in "The Molecule-Metal Interface", edited by Norbert Koch, Nobuo Ueno and Andrew T. S. Wee, Wiley

  2. "NEXAFS Studies of Molecule-Metal Interfaces" (invited book chapter) Qi DC*, Chen Wei,* Wee ATS, in "The Molecule-Metal Interface", edited by Norbert Koch, Nobuo Ueno and Andrew T. S. Wee, Wiley

  3. "In-situ STM studies of molecular self assembly on surfaces" (invited book chapter)Chen Wei*, and Wee ATS*, in "Scanning Probe Microscopy: techniques, applications and future directions", p37-55, edited by Nikodem Tomczak and Kuan Eng Johnson Goh, World Scientific, Singapore.



Papers selected as journal cover or Frontispiece Paper:

  4. "Tunable two-dimensional binary molecular networks" Huang YL, Chen Wei*,
  Li H, Pflaum J, Ma J, Wee ATS*, Small 6, 70-75 (2010). Selected as Frontispiece   Paper.









  3. "Low- Temperature Scanning Tunneling Microscopy Investigation of
  Epitaxial Growth of F16CuPc Thin Films on Ag(111)" Huang H, Chen Wei*, Wee   ATS*, J. Phys. Chem. C. 112, 14913-14918 (2008). Cover in issue 39 25th Sep.








  2. "Self-Assembled Organic Donor/Acceptor Nanojunction Arrays" Chen Wei*,   Zhang HL, Huang H, Chen L, Wee ATS*, Appl. Phys. Lett. 92, 193301 (2008)   (cover image in the 12th May issue). Highlighted by Nature
  Nanotechnology 3
, 375 (2008).







  1. "Atomic force microscopy study of hexagonal boron nitride film growth on 6H-SiC   (0001)", Chen Wei, Loh KP*, Lin M, Liu R, and Wee ATS, Phys. Stat. Sol. (a), 202   , 37 (2005). Front cover and editor's choice.





Download Full Publication